Index Register Organization

The index register can be addressed in two modes

a. By specifying 1 out of 16 possible locations with an OPA
code of the form RRRR{(1) (See Table III).

b. By specifying 1 out of 8 pairs with an OPA code of the
form RRRX(2) (See Table III).

When the index register is used as a pair register, the even
number register (RRRO) is used as the location of the middle
address or the upper data fetched from the ROM, the odd number
register (RRR1) is used as the location of the lower address
or the lower data fetched from the ROM.

SINGLE REGISTER ADDRESSING REGISTER PAIR ADDRESSING
T
14 15 7
¢
. T
12 13 6
1
l
wwmE—— e | s
|
I
8 9 4
i
i NUMBER
4 5 2
1
1
2 3 1
L
: 1
0 1 °
]
Table 111 - Index Register Organization

Operation of the Address Register (Program Counter and Stack)

The address register contains four 12-bit registers; one register
is used as the program counter and stores the instruction address.
the other 3 registers make up the push down stack.

Initially any one of the 4 registers can be used as the program
counter to store the instruction address. In a typical sequence
the program counter is incremented by 1 after the last address

is sent out. This new address then becomes the effective address.
If a JMS (Jump to Subroutine) instruction is received by the CPU,
the program control is transferred to -the address called out in
JMS instruction. This address is stored in the register just
above the old program counter which now saves the address of

the next instruction to be executed following the last Jus. (3)
This return address becomes the effective address following

the BBL(Branch back and load) instruction at the end of the
subroutine.

(1) In this case the instruction is executed on the 4-bit content addressed

by RRRR.

(2) 1In this case the instruction is executed on the 8-bit content addressed
by RRRX, where X is specified for each instruction.

(3) Since the JMS instruction is a 2-word instruction the old effective
address is incremented by 2 to correctly give the address of the next
instruction to be executed after the return from JMS.

12



NO JMS
RECEIVED

EFFECTIVE
ADDRESS

JMS #2
RECEIVED

JMS #4
RECEIVED

THE DEEPEST RETURN ADDRESS IS LOST PROGRAM COUNTER PUSHED DOWN ONE LEVEL

ADDRESS REGISTER ADDRESS REGISTER

IMS #1
- ™ RECEIVED ™ PROGRAM COUNTER |«— il;l;ERCETgE

PROGRAM COUNTER - RETURN ADDRESS #1

PROGRAM COUNTER PUSHED UP ONE LEVEL

JMS #3
PROGRAM COUNTER —*RECEIVED — RETURN ADDRESS #3
RETURN ADDRESS #2 ' RETURN ADDRESS #2
RETURN ADDRESS #1 ’ RETURN ADDRESS #1

PROGRAM COUNTER

RETURN ADDRESS #3 RETURN ADDRESS #3

BBL
RETURN ADDRESS #2 _’RECHVED — RETURN ADDRESS #2

PROGRAM COUNTER

RETURN ADDRESS #4 PROGRAM COUNTER

Table IV - Operation of the Address Register on a Jump to Subroutine Instruction

In summary, then, a JMS instruction pushes the program counter
up one level and a BBL instruction pushes the program counter
down one level. Since there are 3 registers in the push down
stack, 3 return addresses may be saved. If a fourth JMS occurs,
the deepest return address (the first one stored) is lost.

Table IV shows the operation of the address stack.

Operation of The Command Lines and the SRC Command

The CPU command lines (CM-ROM, CM—RAMi) are used to control the
ROM's and RAM's by indicating to them how to interpret the data
bus content at any given time.

The command lines allow the implementation of RAM bank, chip,
register and character addressing, ROM chip addressing, as well
as activating the instruction control in each ROM and RAM chip
at the time the CPU receives an I/0 and RAM group instruction.

In a typical system configuration the CM-ROM line can control
up to sixteen 4001's and each CM-RAM; line can control up to
four 4002's.

Each CM-RAM; line can be selected by the execution of the DCL
(Designate Command Line) instruction. The CM-ROM line, however,
is always enabled. (1)

(1) If the number of ROM's in the system needs to be more than 16, external
circuitry can be used to route CM-ROM to two ROM banks. The same comment
applies to the CM-RAM; lines if more than 16 RAM's need to be used.

13



Mnemonic:
OPR OPA:
Symbolic:

Description:

EXCEPTIONS:

FIN (Fetch indirect from ROM)

0011 RRRO

(Pg) (0000) (0001) —> ROM address

(OPR) — RRRO

(OPA) —> RRRI

The 8 bit content of the 0 index register pair (0000)
(0001) is sent out as an address in the same page

where the FIN instruction is located. The 8 bit word

at that location is loaded into the designated index
register pair. The program counter is unaffected; after
FIN has been executed the next instruction in sequence
will be addressed. The content of the 0 index register
pair is unaltered unless index register 0 was designated.

a) Although FIN is a l-word instruction, its execution
requires two memory cycles (21.6 psec).
b) When FIN is located at address (Py) 1111 1111 data

will be fetched from the next page(ROM) in sequence and
not from the same page (ROM) where the FIN instruction is
located. That is, next address is (PH + 1) (0000)
(0001) and not (Py) (0000) (0001).

E.

Mnemonic:
1st word OPR OPA:
2nd word OPR OPA:

Two Word Machine Instruction

JUN (Jump unconditional)
0100 A3 A3 A3 A4
Ay Ay Ay A2 Ap Al A Ay

Symbolic: Al A} A] Ay —>Pr, Ay Ay A Ay —» Py, A3 A3 A3 A3 — PH

Description: Program control is unconditionally transferred to the
instruction locater at the address A3 A3 A3 A3, Ay A2 Ay A,
Al Ay Ay Aj.

Mnemonic: JMS (Jump to Subroutine)

1st word OPR OPA:
2nd word OPR OPA:

0101 A3 A3 A3 A3
A A2 A2 A2 Al Al A)

Symbolic: (Pyg, PM, PL + 2)—> Stack
Ay Al A] A) —>PL, A2 A2 Ay A) —> Py,
A3 A3 A3 A3 —Py v
Description: The address of the next instruction in sequence following
JMS (return address) is.saved in the push down stack.
Program control is transferred to the instruction located
at the 12 bit address (A3A3A3A3A2A2A2A2AlAlAlAl). Execu-
tion of a return instruction (BBL) will cause the saved
address to be pulled out of the stack, therefore, program
control is transferred to the next sequential instruction
after the last JMS.
The push down stack has 4 registers. One of them is used
as the program counter, therefore nesting of JMS can occur
up to 3 levels.
EXAMPLE : Stack . Stack
No JMS JMS #1
received - ™ received -
Program Counter
Program Counter Return address #1
Stack Stack
Program Counter
S #2 Program Counter JMS #3 Return address #3
T received > received -
, Return address #2 Return address #2
Return address #1 Return address #1
Stack
Return address #4 Program Counter
Return address #3 BBL Return Address #3
—> JuS #4 —> received - al
received -
Return address #2 Return Address #2
Program Counter

The deepest return address is lost

27



