Notes on the
SWTPC MP-N Caleculator Interface
and the

Calc~1 Program

prepared for.
Dr. Daniel W. Scott
CSCI 490,001

by
Daniel Paul Long

May 8, 1979

Notegs on the
SWTPC MP=-N Calculator Interface
and the

Cale~1 Program

I assembled an SWPPC MP-N Calculator Interface and
implemented it using the Calc~1 Program supplied with
the kit. The following are my corrections to the doc-
umentation and my observations about the interface
board and software,

This interface was bought to perform floating-point
arithmetic and for its function capabilities such as
SIN, C0S, and EF. My application required an integer
truncation function that is not performed by this cal-
culator, so I wrote a small assembly language subroutine
to do it. A potentially irritating problem is that the
calculator chip does not automatically convert to scien-
tific notation if the numbers become too big to display
in floating point. The control program must keep track
of the display mode,

My application requires fast numerical processing,
so, after observing the calculator's computational
speed using the Calc-1 program, I decided that its
trigonometric functions were too slow, I developed
another approach to the problem using pure assembly
language rather than partially relying on peripheral

hardware processing.

—1—

-2a

Though I found no major flaws with the Cale-1 software,
I did find some mistakes in its documentation. In Table V,
the ASCII to Calculator Instruction Lookup Table, there
are three errors: the hex value in the table where MSB
is O and LSB is D should be 21, where M3B is 1 and LSB
is 8 should be 2P, and where MSB is 2 and LSB is E, the
hex value should be 0A, I added a one page sumary of
the Cale-1 instruction set to the documentation because
the supplied documentation is somewhat confusing,

The Calc-1 program uses a part of RAM also used by
the monitor. This provides problems when Calc-1 is
halted to record it on cassette tape and resume
after it has been recordfaThis can be alleviated by
changing the "LDX PARADR" instructions in lines 250,
850, 1660, and 1980 to "LDX #$800C," or, in hex,
"FE A002" to "CE 800C," However, the interface must
now always be plugged into I/0 port 3., The data at
hex address 028A is output to the terminal to clear
the screen. The ADM terminals we wees use a different
character to clear the screen, so I changed the data
at that address to hex 1A, Calec-] also uses address
modification within itself so that, as a result, it cannot
be implemented in ROM.

I tested the MP-N interface with the Cale-1 program
by making various operand and operator entries and

checking the results against the results I obtained

-3=

with my own pecket scientific calculator, I noticed

no major discrepancies between the two sets of .results.

SWTPC

MP=N Calculator Interface

Documentation

Assembly Instructions MP-N Calculator Interface Kit

\J

The Southwest Technical Products MP-N Calculator Interface interfaces the
SWTPC 6800 Computer System thru a peripheral interface Adaptor (PIA) to the
National Semiconductor MM57109 Number Oriented Processor. This "processor" is
a Reverse Polish Hotation (RPN) calculator chip without the internal keypad inter-
facing cirecuitry which has mgde interfacing to calculator chips so difficult in the
past. This chip allows data and instruction entry in conventional binary form and
speeds entry with the elimination of the debounce circuitry built into conventional
calculator chips. It 18 called a processor because it has instructions and control
lines which allow it to operate in conjunction with ROM and RAM as a stand alone
numerical processor. It may however be operated as a computer peripheral for nu-
merical calculation and this is the configuration in which the chip has been imple-
mented.

All interfacing from the 6800 Computer System to the calculator chip has been
done thru a 6820 PIA. Both the PIA and calculator chip reside on a 3 %" X 5 ¥
double sided, plated thru hole circult board plugged onto cne of the seven avail-
able interface card positiona on the mother board of the 6800 Computer. All data
and instructions fed to and all results received from the calculator chip are
handled by your own assembler or machine language program. The calculator features
reverse Polish notation, floating point or scilentific notation, up to an eilght
digit mantlssa and two digit exponent, trig functions, base 10 and natural logarithms,
and overflow indicator,

PC Board Assembly 3

NOTE: Since all of the holes on the PC board have been plated thru, it is
only necessary to solder the components from the bottom side of the board. The
plating provides the electrical connection from the "BOTTOM' to the '"TOP" foil of
each hole. Unless otherwise noted it is important that none of the connections be
soldered until all of the components of each group have been installed on the board.
This makes 1t much easier to Interchange components if a mistake is made during
assembly. Be sure to use a low wattage iron {(not a gun) with a small tip. Do not
use acld core solder or any type of paste flux. We wlll not guarantee or repalr any
kit on which either product has been used. Use only the solder supplied with the kit
or a 60/40 alloy resin core equivalent. Rewember all of the connections are soldered
on the bottom gide of the board only. The plated-thru holes provide tne electrical
connection to the top foll.

() Before installing any parts on the circuit board, check both sides of the board
over carefully for incomplete etching and foll "bridges" or "breaks". It is un-
likely that you will find any, but should there be ane, especially on the "TOP"
side of the board, it will be very hard to locate and correct after all of the
components have been installed on the board.

() Starting from one end of the circuit board install each of the three, 10 pin
Molex female edge connectors along the lower edge of board. These connectors
must be inserted from the “"TOP'" side of the board and must be pressed down
firmly against the circuit board, so that each pin extends completely into the .
holes on the circult board. WNot being careful here will cause the board to —’
either wobble and/or be crooked when plugging it onto the mother board. It is

—1-

either wobble and/or be crooked when plugging it onto the mcther board. It is
suggested that you solder only the two end pins of each of the three connectors
until all have been installed at which time if everything looks straight and
rigid you should solder the as yet unsoldered pins,

() Insert the small nylon indexing plug iInto the lower edge connector pin ::>
indicated by the small triangular arrow on the "BOTTOM" side of the circuit

board. This prevents the board from being accidently plugged on incorrectly.

() Attach all of the resistors to the board. As with all other components unless
noted, use the parts list and component layout drawing to locate each part
and 1install from the "TOP" side of the board bending the leads along the
"BOTTOM" side of the board and trimming so that 1/16" to 1/8" of wire
remains. Solder.

() Install the capacitors on the circuit board. Be sure to orient electrolytic
capacitor C4 so 1ts polarity matches with that shown on the component layout
drawing. Solder,

{) Install the transistor and diode. These components must be oriented to match
the component layout drawing. golder.

() Install integrated circuit IC2 on the circuit board. This component must
be oriented so its metal face 1is facing the circuit board and is secured
to the circuit board with a #4 - 40 X 1/4" screw, lockwasher and nut. A
heatsink is net used. The three leads of the integrated circuit must be
bent down into each of their respective holds. Solder.

NOTE: MOS integrated circuits are susceptible to damage by static electricity.

Although some degree of protection is provided internally within the in-egrated
circuits, their cost demands the utmost in care . Before opening and/or

installing any MOS integrated circuits you should ground your body and all metallic
tools coming ianto contact with the leads, thru a 1 M ohm 1/4 watt resistor (supplied
with the kit)., The ground must be an "earth" ground such as a water pipe, and not

the circuit board ground. As for the connection to your body, attach a clip lead

to your watch or metal ID bracelet. Make absolutely sureé you have the 1| Meg ohm
resistor connected between you and the "earth' ground, otherwise you will be creating
a dangerous shock hazard. Avoid touching the leads of the integrated circuits

any more than necessary when installing them, even if you are grounded. On those
MOS IC's belng soldered in place, the tip of the soldering iron should be grounded

as well(separately from your body ground) either with or without a 1 Meg ohm resistor.
Most soldering irons having a three prong line cord plug already have a grounded

tip. Static electricity should be an important consideration in cold, dry environments.
It 1s less of a problem when 1t is warm and humid.

() Install MOS integrated circuits IC1, IC3, IC4 and ICS5 following the precautions
given in the preceding section. As they are installed, make sure they are
down firmly against the board before soldering all of their leads. Do not
bend the leads on the back side of the board. Doing so makes it very v difficult
to remove the integrated circult should replacement ever be necessary. The
""dot" or "notch" on the end of the package 1s used for oriemtation purposes
and must match with that shown on the component layout drawing for the IC.
Solder.

{) Working from the "TOP" side of the circuit board, £ill in all of the feed- -}
thru's with molten solder. The feed-thru's are those unused holes on the

board whose internal plating connects the "TOP" and "BOTTOM" circuit connections.
Filling these feed-thru's with molten solder guarantees the integrity of the
connections and increases the current handling capability.

{) Now that all of the components have been installed on the board, double check
to make sure all have been installed correctly in theilr proper location.

() Check very carefully to make sure that all connections have been soldered.
It 1is very easy to miss some connections when soldering which can really cause
some hard to find problems later during checkout. Also look for solder o
"bridges'" and "cold" solder joints which are another commen problem.

Since the MP-N circuit board now contains MOS devices, it 1s susceptible
to damage from severe static electrical sources. One should avoid handling the board
any more than necessary and when you must, avold touching or allowing anything to
come Into contact with any of the conductors on the board,

Using the Calculator Interface

Table I gives a complete list and descrivtion of the calculater c¢hip's
ingtruction set. Remember that some of the instructions
are for stand alone processing systems and are not used on this interface. All
nunerical entry is 1in Reverse Polish Notation (RPN) and anyone familiar with Hewlett
Packard calculators should have no problem with the data entry sequence. For those
not familiar with RPN, the following should be helpful:

To add 7 + 8, enter the following

7 enter 8 + (4 entries)

The answer is now stored in the X accumulator within the calculator chip
The QUT iInstruction may be used to output the answer

To find the inverse sine of 0.5, enter the following:

0.5 INV SIN (5 entries)

The answer 1s now stored in the X accumulator within the calculator chip.
The OUT instruction may be used to output the answer,

In order to simplify the interfacing between your program and the calculator
interface, you will probably want to incorporate the following subroutines into
your program.

INITAL SUBROUTINE

The INITAL or initialize subroutine configures the PIA interfacing to the
calculator chip. This subroutine need only be used once; and is best placed
somewhere at the beginning of your program. It is responsible for initializing the
data direction registers and control regilsters of the PIA. The subroutine requires
that the index register be loaded with the "lowest" address of the PIA interfacing
to the calculator chip prior teo execution.

This "lowest" address depends upon which Interface port position the MP-N
calculator card is plugged. The table below give the 'lowest' address of each
interface card position.

Address Asslgnments

PORTP 8ppp
PORT! 8A04
PORT?2 8908
PORT3 84nC
PORT4 o190
PORTS 8p14
PORTH 8018
PORT7 801C

24 7F INITAL (.DA A #E7F INIT & SIDE SF FIA
a7 00 STA & O, 1

Sé Dl LOA A H3Za FRIGHE ACLO-FOs READY
A7 O1 =TA A 1L.X

ad0 00 LOA A HEOO INIT B ZIDE OF FIA
A7 02 STA A Z. A

S 2 LA A #3334 NED PN

a7 o= TR A D7

Ad 02 LA A I, X CLEAR R W Rl

e RTS

OUTINS SUBROUTINE

The QUTINS or out instruction subroutine is used to get program data and
instructions into the calculator. To send a digit or instruction to the calculator
chip, use Table IT to find the OP code of the instruction you wish te send. Load
this OP code into the A accumulator and jump or branch to the OUTINS subroutine.

If you have a string of data you wish to send, just recycle thru this subroutine

as many times as necessary. The subroutine takes care of all of the READY and HOLD
signals to the calculator chip so there is no worry of sending data faster than

the calculator chip can accept it. The subrputine destroys the contents of the B

accumulator during execution while the contents of the A accumulator and Index register
are not destroyed.

E& Ol QUTINZ LDA B 1, X WaIT Fofs REALDY

ZA FC EFL QT ING

A7 00 STA A O, X FOrWARD INSTRUCTION T AL
E& Q0 LA B O, X CLEAR FLAG EBIT

L& 2C LOA & #33C Lol HOLDO-NEG REALDY

E7 01 STA B 1.X BRING HOLD LINE LiOW
£& 01 WAITIO LOA B 1.X

2R FC EFL WAITI1G Ladk, FOR REALDY LOW

E& OO0 LA B G, X CLEAR FLAG EIT

Céa 36 LOA B #FI4 HIGH HOLD-FPOE REALDY
E7 0Ol =TA B L X RETURN HOLD LINE HIGH
a9 RT=

SETMEM SUBROUTINE

The SETMEM or set memory subroutine initializes the memory locations to which
the calculator's output data will be stored. This gubroutine must be executed
immediately before the OUTANS subroutine is used. Although it can be changed,
memory locations #82P thru PP2B have been designated the temporary storage locations
for the calculator's output data. The subroutine sets memroy location BP20 to a 0P
while locations 21 thru 2B are set to 20 {ASCII spaces). This subroutine destroys
the contents of the index register and B accumulator. The contents of the A
accumulator are not destroyed.

7F QQz0 SETMEM LR 320 CLEAR 0020

CE ©Q0QzZ0 LOX HFZO COTToM OF RUFFER

Cé 20 Lo o HeZo

08 LOGF1T INX

E7 00 STA B O, X STORE & EFACE

&- OQZE CFX - 19y e CHECH FOR TSGR OF EUFFER
26 F& ENE LOOF1

29 RTE

OUTANS SUBROUTINE

The OUTANS or output answer subroutine outputs the contents of the X
register within the calculator chip in BCD to memory locations 0020 thru 002B.
Since the mantissa digit count of the calculator is variable, the previous SETMEM
subroutine blanks out any digit location not filled by the OUTANS subroutine.
It 1s very important that the SETMEM subroutine be used each time before executing
the OUTANS subroutine. The OUTANS subroutine outputs data in two different formats
depending upon whether the calculator chip 1s in the floating point or scientific
mode. The calculator initially starts out in the floating point mode where 1t will
remain until changed by the TOGM (2216) instruction. Thig calculator does not
automatically convert to gcientific notation if the numbers become too big to handle
in floating point as many do. An MCLR (2F;¢) instruction will always reset the
calculator chip to the floating point mode regardless of what mode it was In
originally. Since the calculatos chip does not tell you what mode it is in when
it 1is outputting data, your program must know so you can process the data accordingly.
Table IV shows the format in whicn the data is stored. At the end of the OUTANS
subroutine, the N bit of the condition code register 1s set 1f an error has trans-
pired since the last execution of the OUTANS subroutine. You may use a BMI instruction
to catch and branch to an error routine to note the error. You should then send
an ECLR (2B 6) instruction to the calculator chip to reset the calculator
chip's error flag. Disregarding the error flag on the calculator chip will
caugse no problems. The chip will continue to function regardless of the state
of the flag. The subroutine requires that the index register be loaded with
the "lowest" address of the PIA interfacing to the calculator chip prior
to execution. Since the SETMEM subroutine usually run prior to this destroys
the contents of the index register, don't forget to reload the index register before
branching to the OUTANS subroutine. The OUTANS subroutine destroys the
contents of both the A and B accumulators during execution while the contents of
thfaigg§§_£§51§£95@}s not changed.

—— -5-

E&s O
A FLC
A& OO
a4 16
A7 00
Ce =
E7 01
Eé O1
ZA FC
E& OO
mé& OF
A7 Q0O
E& O3
ZhEO&
E4 01
ZE 14
2 Fé
As 02
1é&

o4 OF
g2a 30
4

54

o4

o4

CA 20
F7 01L&
27 00
Z0 EZ
a6 B6
&7 01
AL QO
39

OUTANZ

WAITZO

WARITS

QuTnIG

LOA
EFL
LA
LI
=ZTA
LDA
STA
LA
EFL
LA
LDA
STA
LDy
EMI
LA
EMI
ERA
LDA
TAE
ANL
GRA
LER
LZR
LR
L=ZR
LIRA
=TA
STA
ERA

i LDA

oTA
LOA
RTE

mpmm D D

DD

o

I

Tmmmmmm I D

DD

iaX
AT ANS
lA:'J :l'

Hy i
i, X
HTE
ir X
1, X
WAITD
O X
#FOF
':)1 X

Z0 :’:
CiJgTDIis
1J x‘
CONFLG
WAITS
00X

#HeOF
HEZOD

e
FOINTLZ+1
E 2]
WAITxz
s

i, X

D, X

CLEAR FLADG

AN T

e N

IV

Lol RHiOLD—-FiO5 READY

ERING

Moo

wAIT FOR =

LINE LidW
ECCND READY

CLEAR FLAG BIT

ZEND
LIk

LD
FRINT

A

NOF

FOR RAW ZTROEE
TRANSFER CTALL DATA To MEMIRY
FioR REALDY STRUOEE

MEMOD

RY ZONTENTEZ

LGAL JUT DATA INTO A

i

UFFER 4 BITS
ASCIT OATA

INCREMENT ADORESSEZ BY $Z0O
STLRE ST

DATA SEGUERTIALLY

Hiom molD=Fios READY
ERINS il

CLEAR

SLAS

LINE HIGH
BIT

Number Entry Rules

When a digit, decimal point, or 1T is entered with an 0-9, DP, or PI
instruction, the stack 1s first pushed and the X register cleared: Z-T,
Y-+Z, XY, 04X. This process is referred te as "initiation of number
entry.” Following this, the digit and future digits are entered into the
X mantlssa. Subsequent entry of digits or DP, EE, or CS instructicns do
not cause initiation of number entry. Digits following the eighth mantissa
digit are ignored. This number entry mode is terminated by any insfruciton
except 0-9, DP, EE, CS, PI, or HALT. Termination of numbetr entry means
two things. First, the number is normalized by adjusting the exponent and
decimal point position sc that the decimal point is to the right of the first
mantissa digit. Second, the next digit, decimal point, or tT entered will
cause initilation of number entry, as already described. There 1s one exception
to the number entry initiatiom rule. The stack is not pushed if the instruction
prior to the entered digit was an ENTER. However, the X register is still
cleared and the entered digit put in X.

The ENTER key itself terminates number entry and pushes the stack.
The OUT instruction terminates number entry and prepares the stack for pushing
upon the next entry of data. This means that if you use the ENTER and OUT
Instrucitons consecutlively, the stack gets pushed twice which {s not what you
want. If you wish to ENTER data and immediately OUT the result, use only the
OUT instruction. The OUT performs the entry. If you do mnot wish to OUT
the ENTER'ed data, just use the ENTER instruction by itself.

The AIN and IN instructions should not be used for number entry. Provisions
have not been made for their use on this interface.

How It Works

Peripheral Interface Adaptor (PIA) ICl interfaces the MM57109 calculator chip,
IC3, to the SWIPC 6800 buss. The first six bits of the A side of the PIA are used
to feed instructions to the calculator chip while the eighth 1s used as an input
to monitor the ERROR output of the calculator,. Control line CAl outputs HOLD
signals to, while control line CA2 inputs READY signals from the calculator chip.
The first four bits of the B side of the PIA are used to I1Input BCD digit data while
the last four bits input digit addresses. The CB] line 1lnputs READ/WRITE signals
while the CB2 control line is not used. Hex inverter/buffer, IC4, is used primarily
as the 320 to 400 Khz single phase oscillator required by the calculator chip.
One section is used to invert the HOLD signal going to the calculator. Shift
register ICS generactes the POR signal required for proper startup and initialization,
+5 VDC power required by the board is supplied by voltage regulator IC2 while
-4 VDC voltage is supplied by transistor Ql and its associated components. Figure I
shows a block diagram for the internal construction of the calculator chip.

/

<l Nk kelell<l< ekl

I‘ \KLla

kL

<

|

Rl
k2
R3
R4
R5
R6
R7
R8
RY
R10
R1l
R12
R13
Rl4
R15
R1l6
R17

Cl
C3

Ch*

Dl
D2*
D3*
Dé*
D5*
D6*
D7*
Q1%

IC1*
IC2*
IC3*
IC4*
IC5*

Parts List MP-N Calculator Interface

Resistors

47¢ ohm % watt resistor
IK n n Tl
IOK " 1 "
IOK] t "
10K 1 [} "
lOK " 11] 11
lOK 1" 1 "t
ZZK " 1t n
22K 11 T 7"
221(" 1 "
22K n " 1
IZK n 1" "
27 (3] (R (1]
3.31(n 1" n
10K " n 11}
47K 11l " -
IOK 1" 3] 111

Capacitors

0.1 mfd capacitor
100 pfd capacitor
0.1 mfd capacitor
10 mfd@ 15 VDC electrelytic

Diodes and Transistors

4.7 volt 400 mw zener diode 1N5230 or 1N4732
IN4148 silicon diode
[1] T

2N5087 transistor

Integrated Circuits

6820 MOS peripheral interface adaptor LEZZ2]|
7805 voltage regulator

MM57109 FAN MOS calculator chip

4009 or 14009 MOS hex inverter

74Cl65 MOS shift register

Ea

1
iy
lQ £ld o O-Z1HO i -
1 I
_a@d (. y L=l
00 Ty - RS
(AL OM_Q . R
22 ¥ | oLuo
h ° <d o-L4¢ _ ©OWO
» O~9H=0 = O=6¥0
o-SH-0 0-840 0-£4-0
pgiiininaty ,?*za A S
N O 0-Z4-0
st |
L 9L \
.Y e

MP-N CALCULATOR INTERFACE

(] (!
B —
D4 D3 D2
+3 UNR Ic2 T +5 OUT == 16]5 14|
Vec G D
l C_I , (=1
T CLOCK]
GND GND Rz IC 5 SHIFT/LOAD
5 <5 ouT
9
20] 15] GND F F H SI A B C tNH
) alalale rolnfiz1a]1s R16
R50 2] &so v car foo Icat 21 Ve [a]efeJrofnjrefisfis]
— 2] 1 EADY n
1 3 1
RS] #———2] 2 caz b2 2 HOLD PCR }
o a3 5 PAD e D5 D& D7 4 I 1 0 -4 -4
o e———— 4 Dy i
D) e——dt.. 32| D, par 13 : —2l
Dz.————li 02 PAZ 4 | 13 13
I 30lp 3 1 I 4
D3 oo Dy PA3 14
Da] 29.04 PAd L& I L zlis k12
De 1 28] oo 7 1 1 24 +5
5 #—— = D PAS 16
Cy '_____:____gl Dy PAG _2 ! I]_3 v AVAVAV
Dy gt 26/ PAT ‘ | ERROR
| =
— “lo/w I J Tk]
R/W | r] Do 1C4D 1C4C 1C48 IC4A
25 18
P e R/ W 7 3 14 1 8
S S O e z
I
15 9
e { ggo pag {10 |+ | v ool
22l & IR I
23 Pel 21 31 1 1 I t 19 002
/Of e———n"] 52 PB2 0o i
ppypd v o 0 v T L 291 e L
— 34| —— 14 10 ¢ v 0 ¢ 1} 173
RESET RESET Ir::; T — 5> 32; -4 c2
pad Rerovy Py ML L R z L2 DA3
.__{ - L is T 1
RO __;_ RaE Po7 17 ¢ 1 v 4t t 0 [} 25 DA4 _L l
7 - +
Vss Vdd €3 == ca l
T | 21 T —
D1 A =
= R1 § g Ri1
RIS
Q1
- = 3 = - b
-4 VOC OUT R13 R14

~12

CALC-1 Program

In order to see how the calculator chip is used and how to incorporate these
subroutines into a program, the CALC-1 program listing is given. CALC-l allows —~
the operator to use the calculator chip just as you would a standard RPN desk -
calculator with the same features. All communication to the chip is done thru the
terminal's keyboard with all results displayed on the terminal's display. Since
the terminal's keyboard just has standard ASCII characters rather than the labeling
found on calculator keys; selected ASCII characters have been substituted for normal
calculator function keys. It is the job of the CALC-1 program to accept all data
and instruction commands from the terminal's keyboard, send them to the calculator
chip and display all results on the terminal's display. The program resides from
memory locations 0020 thru 02CQ which 1s approximately 700 bytes of code. Since
most of the lower 256 bytes are used for the ASCII character lookup table and some
of the upper is used for terminal interfacing, you should be able to incorporate
the package Into your program using somewhat less memory than was used here.

The program starts at line 50 by storing the ASCII lookup table from
memotry locations @@gp thru PPFF., This table covers the entire 128 character ASCII
set. Whenever an ASCII character is received from the keyboard it is OR'ed with
8#, and the resulting address contains the selected command or Instruction for the
calculator chip. Line 210 ORG's the program at memroy location @#1Pp where the terminal's
screen is cleared and titled. Line 250 loads the index register extended with the
contents of memory locations APP2 and APP3 with 8HPC, the starting address of Port 3.

If you wish to plug the calculator board onto an I/0 port other tham PORT 3. Use
the table below to find the address to be loaded into memory locations AHP2 and
APB3 prior to executing the program.

PORTO 8900

PORT] B8PP4 (Serial control interface only)

PORT2 8pP8 o
PORT3 8ppc

PORT4 gpLe

FORTS 8014

PORT6 8p18

PORT? 8pic

Lines 280 rthru 370 contain the INITAL subroutine described in detail earlier. lines

380 thru 410 accept entered keyboard commands, lookup the selected calculator instr-
uctions and deposit the data or instruction in the A accumulator. Lines 440 thru 550
contain the OUTINS subroutine described in detaill earlier. Lines 550 thru 740 check

to see what instruction or data has been entered so the result may be output if
approplate. Line 710 looks for the TOGM instruction so the program knows which dis-
play mede to use when outputting data. Lines 770 thru 840 contain the SETMEM subroutine
described in detail earlier. Since the SETMEM subroutine destroys the contents of the
index register, line 850 reloads it before proceeding to the OUTANS subroutine con-
tained in lines 880 thru 1200. Line 1210 checks to see of the ERROR flag was set during
the last output sequence. If so, program contrel {s transferred to lines 1220 thru 1350
where an error message is output and the error flag cleared by sending an ECLR instr-
uction to the calculator chip. Line 1380 tests to see 1f the calculator 1is in the
floating point or scientific mode. If floating point, control is transferred to lines
1400 thru 1670. If scientific, control is transferred to lines 1680 thru 1990. In

both modes the data 1s output to the display in the selected mode and program control
is tranaferred back to line 380 where new commands or data may be entered.

-
-’

FAGE

0QUiI0
00020
Q0O0Z0
0G040
GO0S0

QOOEQ

OLOT0

O0GED

QOQe0

Q0100

Q0110

0ol

o0gd
OO80
Q01
0082
Q083
0084
008S
Q024
QOE7
Qoss
00g?
Q0eA
alerg
Qoac
GOLED
QOOZE
O0SF
OG0
O0%1
OOz
093
D074
a0To
007 &
Q097
OOTE
0079
OOvYA
OO9E
oTARY
QO2n
COYE
QOTF
QOAO
00Aal
Q0OAZ
OOAR
O0A4
GOADS
Q0AL
QOA7
QOAS
00AY
00AA
Q0OAB
QOALC
ooAan
QQAE
OOAF
OOBO
00B1

CALC-1

OF
oF

OoF
QF

oF
QF
QF
OF
OF
OF
OF
OF
OF
21
OF
OF
OF
QF
OF
OF
OF
GF
OF
OF
ZF
OF
oF
OF
OF
OF
OF
OF
Z1
OF
OF
OF
OF
OF
OF
OF
oF
OF

a6
poyHE

o
~r

OF
oA
3C
00
01

NAHM
oFT
oFT
CHRIS
FCE

FLE

FLE

FCl

FiZk

FLE

TALT—-1

i

EO0E0
$OF.£DF,$OF,$DF,$QF,$OF.$OF,SOF

$OF, 80F, $OF, 30F, 8OF, $Z1, $OF, 80F

$0F, 30F, £0F, $0F. $0F, 30F, $0F, $0F

$TF, $GOF, 30F, $0F, $0F, $0F, 30F, $0F

L

izl,EGF.EGF,iﬁF.EGF,EGF,$0F.$DF

iOF,EQF,¥3E,$3@.£GF,$3A.QQJ3E

$00, 61, 302, 03, $04, 305, $04, 307

FAGE

00120

00130

0G140

00150

00160

00170

002

QOE2
OOE3
O0E4
O0ES
ela)ct
QOE7Y
Q0Ee
0OB9
O0BA
GOBB
O0BC
QOED
O0OBE
Q0BF
Q0C0
00C1
00C2
Q0C3
00C4a
0O0CS
00Cs
QoOC7
oQcs
QOCY
OOCA
olalmyc
OOCC
OOQC L
QOCE
OQCF
Qoo
ooD1
Qon2

00Dz
oong
oons
OOD&
QOL7
Q0L
oony
QODA
QLR
QoLnC
elelnlel
OOLE
OO0F
QOQEQ
QOE 1
QQE2
QOES
O0E4
Q0ES
COE&
OOE7

CALC-1

02
03
04
05
06
07
og
09
OF
OF
OF
oF
22
OF
OF
1B

2
=

235
2D
QF
20
iC
in
Z0
OF
OF
OF
18 -
35
Zz
oD
&7
24
24
32
=4
21
Z0
ZE
oc
OF
OF
QF
=8
OF
OF
oF

-~
-t

25
20
OB
zC
ic

FZE

FoR

FCE

FICE

$05, $0%, $0F, 30F, $0OF, $0F, $22, $0F

$OF, $16, $34, 325, 320, $0B, 210, $1C

$10, £20, 8GF, $0F, $0F, $1%, $35, $23

$C.’DJ 5:3231 5:3-/'1 i:i‘-"r; ;«:’.-’Ew 513:2) 5:341 531

$30, 320, 00, $0F, $OF, $OF, 335, $0OF

'I":’FJ $C)Ff 5:E-¢’Eu 5;‘54 EEDJ 50]5:: $2C: slr.

FAGE

00180

00190

00200

00210
Q220
002Z0
00240
Q0250
QQZ4Q
0Q270
O0ZB0
Q0230
eleiciele]
00=10
Q0220
QOZZ0
00240
Q0ZS0
003460
Q0Z70
00380
00z%0
00400
0410
00412
00414
00420
Q0430
00440
00450
00440
00470
00430

8le)C;

OQEG
QOE“
O0OEA
OOEER
O0EC
OOED

O0EE
OOEF

QO0F O
O0F
QOF 2
QOF =
OOF 4
QOF S
O0F &
OOF 7
QOF &
OQF <
00OFA
QOF B
QOFC
QOFD
QOFE
OOFF
0100
0100
0103
0104
0109
o10C
QI10E
0110
0112
o114
Q11s
0118
Q11A
oti1c
O11E
0120
0122
0123
012&
0128
012B
0120
Ol12F
0131
0133
Q135
0137
0139
013B
Q13D

CALC-1

I3y
20
OF
OF
OF
18

=
o

23
oD

icic
s

27
Z4
Z&

o~
ICH%)

24
ch
20
Z2L
QC
OF
OF
OF
OF
oF

=13
CE
ED
FE
2D
20
86&
A7
&b
A7
86
A7
84
A7
Ab
39
BD
8a
B?7
26
81
27
80
20
ES
2A
A7
Eb

AD47
Qz&7
EQ7E
faYolale
Q2
13
7F
00
ey
01
00
02
z4
03

02

E1AC
20
o12C
00
21
43
02
17
01
FC
00
00
3C

START

INITAL

COMAND

FOINT

CUTINS

FCE

QRG
Loz
LOX
JSR
LOiX
ESR
ERA
LOA
STA
LDA
2TA
LDA
STA
LOA
STA
LOA
RTZ
JSR
ORA
STA
LDA
CMF
CEQ
EIR
ERA
LDA
BFL
=TA
LDA
([

DD D > >DDD>D>PDDD DD

10, $20, $OF, $3OF, S0OF, $15, 835, $22

50[': 53:31 sE:?; 5241 52&-: 5321 534r 531

$30, 32, $0C, $0F, $0F, $0F, $0F, $0F

$0100
#$A047
HIZLRZCN
FOATA1
FARADR
INITAL
COMAND
#He7F
0y X

3 JCi)
1, X
#3300
Z0 X
#s=4
S X
R ¢

INEEE
HE20
FOINT+1
$00
#3221
ZERMEM
QUTINS
CHRCHK
1. %
CUTINE
0, X
O, X
#3320

DECREMENT STACK
CLEAR AN TITLE TERM.
INIT. A SIDE OF FPIA
HIGH HOLD-FOS READY
INIT. B SIDE OF FIA
NEG R/W

CLEAR R/7W FLAG

GET COFERATOR DATA
FOSITION TO THE TOF OF TAELE

o

FORWARLD INSTRUCTIGOGN TO CALC.
CLEAR FLAG EIT
LOW HOLU-NEG READY

WAIT FOR READY

FAGE

QO490
QOS00
Q510
Q0520
QOSE0
QOS40
QOS50
QOSEQ
QAS70
QOS75
OOSE0
0590
QQLOO
O0&Z0
QOLZ0
00&40
Q0650
OOELD
OQE70
OQ&S0
QQLGO
OO700
QO710
QO7Z0
OO7Z0
Q0740
QO7o0
Q07 &0
00770
Q0750
QOO0
OOe00
Q0810
QQEz0
QOgz0
Q040
aletate]
OOR&QD
O0QE70
QOEE0
Q020
QOY00
00910
OQ920
QOGz0
Q0940
OOTo0
QOZELEQ
00v70
0O07EQ0
sleloaod e
0100C
01010
01020

004

O01zF
0141
0143
0145
0147
0149
Qi4nk
014
014E
Q150
0153
0154

Q152 &
0154a .
018C &

O1SE
0160
014
Q145
Q147
Qra9
Oleab

al1aD 2

O1&F
0171
0174
o177
QL17%
017k
Q17E
Olal
o1&z
01e4
Olaé
o1a7
015k
ozl
O1&F
0191
0193
0195
03197
0199
O19E
Q190
G19F
O1A1
O1AZ
G1AS
Q1A7
01AY
O1AE
OtAD
Cl1AF

CALC-1

e7
Ed&

ES

£
20
7F
CE
Cé
08
E7
sC
2¢
59
FE
&0
20
E&
2R
A
b
A7
Cé
E7
22
2A
Eé
=T
A7
Eb
ZB
Eé

01
Q1
FC
00

v
SERCT

01

11
QOZ0
0QZ0
20

00
O0ZE
Fa

AOQZ
0z
C
01
FC
00
14
00
01
01
FC
00
OF
00
Qs
O&
01

WaITIO

CHRCHE

(i3]

KIF7

on

CONTZO

SHIFZS

ZERMeM

SETMEM

LOoE1

LODADR

CITANE

WAITZO

WRITZ

ZTA
LA
LR
LA
LDm
STAR
RT=
CHF
ENE
CLR
T=7
ENE
CMF
EER
CHME
ENE
£
FRA
ioMF
BE
CMF
ELS
MF
ENE
Ciom
CLR
ESR
ERA
CLR
LhX
LOA
INX
STA
CFX
ENE
RTE
LOX
ESR
ERA
LDA
EFL
LOA
LOA
ZTA
Loy
STA
LOA
EFL
LOA
LA
=TA
LDA
Ml
LA

m

Mmoo D DD

L Im

m

HEZF
EMIFTD
FiRmaT
MOz
LERMEM
i F0F
IDMAND
Hz iz
SEIFZS
MO
COMANT
HE20
CoOManNT
#3OE
ZOMARND
32z
ZERMEM
FiORMAT
=
TETMEM
LitbalR
F40
#%20
He 2o

O, X
HEZE
LOOF §

FARALIR
CHATANE
OUTOHR
i, X
ST ANE
Gy X

#% 1o

O X
#5ZE
1, X
3.‘X
WAITZG
e X
“3OF

s X

L ¢
AATDIG

i+ x

ERING HOLD CINE LW

LDk, FOR READY LOW
CLEAR Fumld BIT

MIGH HOLD=FOS REALY
RETURN H3L O LINE HIGH

CHEDER FOR FPRENW TOLE SMOH

-

MIJRE DATA IF NOF

L]
m

GET MORE DATA IF sMDI

GET MORE DATAH IF LNV

GET MORE DATA IF NUMEERS

LOO FOR TCIEM

ZERO =MD

CLEAR FOOZC
DOTTOM J4F CIUFFER

STORE A ZFALE
CHECH FOR TOF JF BLUFFER

CLEAR FLAG EIT
SENT AN DT

LW ROLO-FOz REALY
BRING ROLD LINE LW
WAIT FOR SECIONLD ReADY
CLEAR FLAG EBIT

SEND A NEF
LODE, FOR RZ7W STROEE

INSTR

TRANIFEZR ZALC DATA TO MEMORY

LOoE. FOR READY ZTRIJEE

FAGE

01020
01040
01050
01060
Gl1070
01020
Q1090
01100
01110
011206
01120
01140
01150
011&0
01170
01120
Q110
O1200
O1210
1770
012320
1240
01250
QL1 Z&0
Q1270
01220
01290
D1300
(@] 1 =1 ‘.)
01320
O1330
01240
01350
01260
01270
01380
01390
01400
01410
01420
Q1420
01440
01450
01440
01470
01480
01490
01500
01510
01520
01520
, 01540
01550
013540

OO0

01FE1

OIEZ

01BS
Q1E7
Q1ES
QO1EA
O1EBC
Q1E0
OlbE
O1LF
O1C0
Q102
0105
O1C7

1oy &2

OICE
O1Ch
wlCF

G106

10z

a104 2

Q10é
Ol1DE
O10A
O10C
O1DE
Q1lEQ
Q1EZ
O1E4
O1ES
OlES
O1EA
OlED
O1iFO
O1FZ=
O1F &

OLF9 2

OIFED
O1FE

O0zZ00 &

HZOZ
0204
Q204
Qz08
0zZ0A
0z0D
020E
0210
0z12
0z14
02164
oz1ge
0Z1A
0z1B

CALC-1

26 16
Fé
. 02

OF

ghA I

20
01C4
57 0O
20 EZ
2
01
. 00

1E
. 01
FC
ZE
Q0
Sele]
C& 2T
a1
» 1
FC
Q0
&
01
Q2RO
EOT7E
0ZA8
EQOYE
OZAE
aF
Qozz
Q0
0g
04
20
0z
20
ED E1D1
00
OF
00
2F
Qo0
Z1

A& 00

QuUTOIG

P POINTZ

CONFLG

CUTCHR
WALT70

WAIT71

CONT 1

FLOFNT

MINFNT
FRINT1
DFIND

DIGLOF

EMI
ERA
L.DIA
TALE
ANLD
CIRA
L3R
2R
LR
LZR
JRA
STA
STA
ERA
LA
STA
LDA
RTE
EFL
LDA
EFL
LA
STA
LDA
LA
sSTA
LDA
EFL.
LDA
LOA
=TA
LOX
JSR
LOX
IR
T=T
EMI
LOx
LDA
AND
ENE
LDA
ERA
LOA
JER
INX
LA
ARD
=ZTA
LOn
LR
ZTA
INX
LDnA

b)

Dommmmom DD

eal DY

Mmoo DD

sy om

T B S
WAaITI
- K

#BOF
#e 0

HEZC
FOINTZ+1
F0
WAITE

HE DA

1. X

G, X

CONT
1IX
WAIT7G
#eil
O, X

X
#32C
1, X

10X
WAIT?I
G, X
HEDL
llx
#ERRMZIS
FOATAL
#CRLF
FOATAL
FORMAT
SO INCT

]

B3z
0, X
#30OEZ
MINFNT
#F20
FRINTL
#eZ0
OUTEEE

O, X
HEOF
X
HE2r
G X
-1

G X

FRINT MEMIRY CONTENTE

Loal SdT DATA INTO A

ELIMINATE UFFER 4 EITS
CORVERT ASCIT DATA

T

INCREMENT ALDREZSSES

HIGH RHOLO-
ERING HOLD
CLEAR FLAG

PGS READY
LINE HIGH
BIY

SEIF IF NO ERROR
WAIT FOR READY

ERROR CLEAR INSTRLIZT ION
CLEAR FLAG EBIT

LW HOLD-NES READY
ERING HOLD LOW

CLEAR FLAS LIT

ALGH AOLD-FiOs READY
RETURN HOLD HIGH
FLOATING FIOINT NOTATION
INFUT MANTIZZA SIGN DATA
MAzt. BIT 4

LAl A SFACE

LoAab A MINLS

FRINT THARALTER

STORE DELC. FT

LY 20
STORE QUT DATA SERQUENTIALLY

FOSITION IND

FAGE 004 CALC-1

QIZ70 0Z10 BD ELD1 JEIR GLUTEEE CHOTFUT AT NUMEER
Q1320 0220 9C 20 CFX 320 TIME FGR LEC, AT ™
Q1990 0222 26 09 ENE ENDITH 1
014600 0224 86 ZE LOA A #3ZE
01610 0224 BD ELLU JIR OIUTEEE
01620 0229 & Q0ZE ENDIHL OFX W3ZLE DHECE FOR LAST DIGIT
016320 QZ20C 26 EL ENE OIGLOF SET NEXT DIGIT
01640 02ZE CE 0ZAS LOx HORLF
01450 0231 BD EOT7E JER FOATAL FRINT CRALF
Oles0 0224 FE AQQZ LbX FarAlR
Q1&70 Q0z27 7B 0123 MF CIOMAND
01620 QZ2A Y6 22 SCINCT LR A FIZ SOIENTIFIC NOTATION
01670 0ZZC 24 08 AND A HE(OD L FOR NEGATIVE MANTISSA
01700 02ZE Z& 04 ENE NEGFNT
01710 02Z40 &84 20 LA A H#HEZO SRPACeE IR NGT
01720 0242 20 02 ERA FRINTZ
01720 0244 &4 20 NEGFNT LOA A #3ZL
01740 0244 ED ELIDY FRINTZ JSR (U TEEE FRINT 210N
01750 0z24% CE 0023 LOX HEZT
017460 024C 08 NUMLGF INX
01770 0240 A& 09 LDA A& 0. X
01720 024F BD EL101 SR HITEEE
01790 0252 &C 0024 ZFX HEZG WOtk FOR DEC. FT. DIGIT
012800 0255 26 05 ENE SEIFDF
01210 0257 846 ZE LDA A #FZE
01820 0259 ED ELDL SR CHITEEE FRINT LEZ. FT.
Q1230 02Z5C C 00ZEB SKIFDF ZFX #EZR CHECR FOR LAST DIGIT
01240 02SF Z& EB ENE NLUIML OF
01850 0241 86 45 LOA A #%49
01860 0247 BD EL1D1 JSR OUTEEE FRINT AN E
01870 0266 96 22 LA A $22 LOAL ZIGN EYTE
01880 0z&8 24 01 AND A B$01
01890 0z2464A 27 05 EEDR SHPSGN
01900 0260 84 2D LOA A #2200
0191Q 024E ED E1D1 JER JLITEEE FRINT A -
G1920 0271 94 20 SKFPEGN - LDA A $Z0
01930 0272 EBD EIDI USSR QOLUTEEE FRINT EXFONENT MsD
01940 027& 96 21 LDA A %21
01950 0278 EBD E1L01 JER CLTEEE FRINT EXFOINENT LSD
019&0 0278 CE QZA& LOX #CRLF
01970 0OZ7E ED EOJ7E SR FOATAL FRINT CRALF
Q1980 0Z&1 FE AQQZ LEX FARADR
01990 0Zz4 7R 0123 AMF iCIMANE
02000 0287 0D CLRSICN FCE SO0, $0A, 310, $1A, $00
0z28 OA
0739 10
0zZ&A 1A
az8B 00
Q02010 022C 53 FCLo TEWTRC AZ00 CALC-1 CALCULATOR
ozzh 57
O2CE 54
QZeF S50
0Z90 43

0z%1 20

FAGE Q07 CALC-1

0
Oz
0294 30

0295 20

QZ7é 20

0Zv7 4=

Q298 41

Qz9v 4C

L2%A 43

ozZvL 2D

OzvC =31

0zZ90 20

QZ9E 43

QZYF 41

GZA0 4

QzAl1 43

QZAZ 35

QZAZ 4L

0ZA4 41

Q2ZAS 54

Q2ZA& 4F

QZAR7 32
02020 02A= OO0 CRLF FLE FOO, 204, 300, G0, 300, $04

0ZAY OA

0zZAAa 00

QZAR QO

QZAC 00

QzZAL 04

7Z 34
_'/ - L E o)

020720 QZAE 00 FOURMAT FLE B0

02040 OZAF 0O SMOC FICE 00

02050 0ZEC OD ERRMEG FCE #OL0, #0GA. $00, 00
0ZE1 OA

0zE2 00
0ZE3 00

OZ04&0 Q0ZEB4 45 Fii ERFO&

O0ZES 52

QZB& 52

OZBR7 4F

OZES 52
02070 0ZE7 04 FCE FO4
02020 EQ7E FORATAL EOU FECOTE
02070 RQQZ FARADR EG 2AOOZ
02100 E1AC INEEE Erl $E 1A
02110 EL1D1 CQUTEEE Ed $E1D:
02120 AQ4E ORG FA0OGE
QZ1Z20 ACdES 0100 FDE F0GO0
02140 AQQZ IR FAOOT
0Z150 AQOQZ Z00C FDEC P00
0Z1&0 END

START 0100
INITAL 0110
COMAND 0123
FOINT 012B
QUTINES 0135

PAGE 00E CALC-1

WAIT1O 0141
CHRCHK 014C
SKIF7S 0153
CONTSO 0158
SKIFZS 0163
IERMEM 0174
SETMEM O17EB
LOOF1 0183
LODADR O18C
OUTANS 0193
WAIT30 O1A1
WAITZ O1AB
QUTLIG O1BS
FOINTZ 01CS
CONFLG O1C9
OUTCHR 01DO
WAIT70 01D2
WAIT71 O1EQ
CONT1 O1FO
FLOPNT OI1FB
MINFNT 0208
FRINTI OZOA
OFIND 020D
DIGLOF OZ1A
ENDCH1 0229
SCINOT 023A
NEGFNT 0244
PRINTZ 0244
NUMLOF 024C
SKIPDP 023C
SKPSGN 0271
CLRSCN 0287
CRLF 02A8
FORMAT O02AE
SMDC o

ERRMSG Oégg
PDATA1 EO7E
PARADR AOCOZ
INEEE EI1AC
OUTEEE E1DI

TOTAL ERRORS 00000

RPN-the only language that lets you “speak™with contidence
and conslistency to a pocket-sized computer calculator.

In 1967, Hewlett-Packard embarked on a major new
development effort: to design a family of advanced com-
puter calculators powerful enough to solve complex en-
gineering/scientific problems yet simple cnough to be
used by anyone who works with numbers.

As part of this effort, HP carefully evaluated the
strengths and weaknesses of the various languages which
an operator might use to communicate with an electronic
calculating device, Among those studicd were:

® computer languages such as BASIC and FORTRAN,

® various forms of algebraic notation, and

n RPN (Reverse Polish Notation), a parenthesis-free
but unambiguous language derived from that devel-
oped by the Polish mathematician, Jan Lukasiewicz,

As might be expected, each of these languages was
found to excel in a particular application. For its biggest
programmable desktop calculators, HP selected BASIC.
For its other powerful desktop calculators, with less ex-
tensive storage capacity, HP chose algebraic notation.

But, given the design constraints of a pocket-sized
scientific compulter calculator, RPN proved the simplest,
most efficicnt, most consistent way to solve complex
mathematica! problems,

Only RPN ofters these powerful advantages
Compared to alternative logic systems, Hewlett-Packard
belicves that only RPN —in combination with a 4-register
operational memory stack —gives you these powerful
advantages.

1. You can always enter your data the samc way, ie.,
from left to right—the same way you read an equa-
tion. Yet, there is no need for a parenthesis key; nor
for a complicated “‘operational hierarchy.”

2. You can always proceed through your problem the
same way. Once you've entered a number, you ask:
“Can I perform an operation?” If ycs, you do it. If
no, you press ENTER+| and key in the next number.

3. You always see all intermediate answeTs — as they

" are calculated —so that you can check the progress
of your calculation as you go. As important, you
can review all numbers stored in the calculator at
any lime by pressing a few keys. There isno
“hidden” data.

4. You don't have to think your problem all the way
through beforehand unless the problem is so com-
plex that it may require simultancous storage of
three or more intermediate answers.

5. You can easily recover from crrors since afl opera-
tions are performed scquentially, immediately after
pressing the appropriate key.

The RPN method consists of four, easy-to-remember
steps. Once learned, it can be applied to almost any
mathematical expression.

f. You don't have to write down and re-enter intet-
mediate answers, o real time-saver when working
with numbers of cight or nine digits each,

7. You can communicate with vour calculator con-
fidently, consistently because you can always pro-
ceed the same way.

If all this sounds too good to be true, bear with us—
you'll soon get the chance to see for yoursclf. But first,
we need to describe how RPN and the 4-register opera-
tional stack operate.

The RPN method — it takes a few minutes to
learn but can save years of frusiration.
Yes, the RPN method does take some getting used to.
But, once you've learned it, you can use the RPN method
to solve almost any mathematical expression— con-
fidently, consistently.
There arc only four easy-to-follow steps:
1. Starting at the left side of the problem, key in the
first or next number.
2. Determine if any operations can be performed. If
s0, do all operations possible.
3. 1f not, press [ENTER#] to save the number for future
usc.
4. Repeat steps 1 through 3 until your calculation is
completed.
A diagram of the RPN method is shown above.

Simple arlthmetic, the RPN way.

Just to show how it works, let’s try the RPN method on
two simple problems (we'll use them again in the com-
parisons that begin on the next page).

Problem: 3 < 4 — 12
RPN solution:

See
Step Press Displayed
1. Key in first number. @ 3
2. Since only one number has been
keyod in, no operations are
possible, Press [ENTER#]. 3

3. Kay in next number. (4] 4

4. Since both numbars are now In
calculator, multiplication can be
parformed, E 12

Problem: (3 _>< 4) -{(5 6)=42
RPN soiution:

See
Step Press Dispiayed
1. Key in first number. 3

2. No operailons possible. Press

ENTER+ |, ENTER+ 3
3. Key in sacond number. (4] 4
4. Since both numbers are in

calculator, first mulliplication .

is possible. ’_’f__] 12
5. Kay in next number, (First inter-

madiate answel will be auto-

matically stored tor luture use.} @ 5

8. No operstions possible. Pross

(ENTERY) .

7. Key In next number. (6]

8. Second muitiplication is poasible

since both numbers are in calcu-

lator. @ 30
9. Addition is possible since both

intermediate answers have been

calculated and are stored in 4-

register operational stack. 42

'

If you've followed us this far, you've noticed two im-
portant facts:
1. Both of these problems were solved in the same,
consistent manner, using the same simple set of rules.
2. All intermediate answers were displayed as they were
calculated, and stored and retrieved as needed to
complete the calculation. With RPN and a 4-register
operational memory stack, there is almost never a
need to write down intermediate answers.

How the operational stack works.

The four registers of HP’s exclusive operational stack
can be represented by the following diagram.

r —
T

T };7*4 op

Z, |

Y| |

X J’Display

When a number is keyed in, it goes into the X register
for display. Pressing the [ENTER#] key duplicates the con-

tents of the X register into the Y register and moves all
other numbers in the stack up one position.

When an operation key ({+],[=], (%],[+],[xY]) is pressed
the operation is performed on the numbers in the X and
Y registers, and the answer appears in the X register for
display. Numbers in the other registers automatically
drop one position.

To demonstrate these points, we'll show what happens
to the stack as we solve the problem: (3 x 4) 4 {5 X 6)
= 42.

As you can see, all numbers are automatically posi-
tioned in the stack on a last-in-first-out basis, in the
proper order for subsequent use,

Now that we’ve described how RPN logic operates, we
can proceed with our problem-by-probiem comparison of
this system versus two others used in today’s scientific
pockcet calculators.

We think you will find it interesting.

Calc-1 Instuction Set

Full Name ASCII Character

Aale I Be WV B S IR B N I i)
L1 HAatE-O

Decimal point
Enter exponent
Change sign
Constant PI

Set mantissa digit count
X exchange M
Memory store
Memory recall
Inverse mode

Enter Sp
Toggle mode

Roll stack

Sine X

Cosine X

Tangent X

Error clear
Radians to degrees
Degrees to radians
Master clear , cnt
X exchange Y

E to X

Ten to X

Square

Square root
Natural log of X
Base 10 log of X
One divided by X

Y to X

Plus

Minus

Times

Divide

PHHZOCEXASAOTN<-Im WO VORIt

— ¥+

Table 1

MMS7 109 Instruction Description Table {Continued) (* Indicates 2-word instruction)

CLASS

SUBCLASS

MNEMONIC®

OCTAL OF
CODE

FULL NAME

DESCRIPTION

Branch

1o

1/0

/0

Mode
Control

Count

Multi-digit

Single-digit

Flags

IBNZ

DENZ

IN*

ouT”

AIN

SF1
PF1

SF2
PF2
PAW1

PRW?2

TOGM

sMmoc”

INV

31

32

27

26

47
50

51
52
75

76

42

30

40

Increment memory
and branch if
M#0

Decrement
memory and
branch it M # 0
Multidigit

input to X

Multidigit output
from X

Asynchronous
Input

Set Flag 1
Pulse Flag 1

Set Flag 2
Pufse Flag 2

Pulse R/W 1

Pulse R/AW 2

M+ 1= M IfM=0 skip second instruction
word. Otherwise, branch to address specified
by second instruction word,

M- 1~ M If M=0, skip secend instruction
word. Otherwise, branch 1o address specified
by second instruction word.

The processor supplies a 4-bit digit address
(DA4-DA1) accompanied by a digit address
strobe (DAS) for each digit to be input, The
high order address for the number to be input
would typically come from the second instruc-
tion word. The digit is input on D4-D1, using
ISEL = 0 to select digit data instead of in-
structions. The number of digits to be input
depends on the calculation mode (scientific
notation or floating point) and the mantissa
digit count {See Data Formats and Instruction
Timing}. Data to he input is stored in X and the
stack is pushed (X = Y — Z — T}. At the con-
clusian of the input, DA4--DAT = Q.

Addressing and aumber of digits 15 identical to
IN nstruction. Each time a new digit address is
supplied, the processor places the digit o he
output on DO4-DO1 and uulwai the R/W line
active low. At the conclusion of output, DQ4—
DOt = Dand DA4-DAY = (.

A single digit is read into the processor on D4—
D1, 1SEL = 0 is used by external hardware tc
select the digit instead of instruction. 1t will not
read the digit until ADR = 0 {iSEL = 0 selects
ADR instead of I5), indicating data vali, F2is
pulsed active low to acknowledge data just read.
Set F1 high, ie. F1 =1,

F1 15 puised active high. If F1 is aiready high,
this results in it being set {ow.

Set FZ high, i.e. F2=1.

F2Z is pulsed active high, If F2 is already high,
this resufts in it being set low,

Generates R/W active low pulse which may be
used as a strobe or to clock extra instruction
bits into a flip-flap or register.

ldentical to PRW1 instruction. Advantage may
be taken of the fact that the iast 2 bits of the
PRW1 op code are 10 and the last 2 bits of the
PRW?2 op code are 01. Either of these bits can be
clocked inta a flig-flop using the RAY pulse.
Change mode from tloating point to scientitic
notation or vice-versa, depending on present
mode. The made affects onty the IN and OUT
instructions. Internal calculations are always in
8-digit scientific notation.

Mantissa digit count is set to the contents of the
second instruction word (=1 to 8).

Set inverse mode for trig or memory function
instruction that will immediately foltow. Inverse
mode is for next instruction only.

Table I

MMS7109 instruction Description Table (* Indicates 2-word instruction)

CLASS | SUBCLASS | MNEMONIC® ocg:[;.Eop FULL NAME DESCRIPTION
Digit 00 Mantissa or exponent digits. On first digit {d)
Entry o the following oceurs: 2 ~+ T
02 Y +- 2
03 X-+Y
G4 d - X
05 See description of number entry on page 11.
06
o7
10
N
12 Digits that follow will be mantissa fraction,
13 Digits that foltow will be exponent.
14 Change sign of exponent or mantissa,
Xm = X mantissa
Xe = X exponent
CS causes —Xm — Xm or —Xe — Xe depending
on whether or not an EE instruction was
executed after last number entry initiation.
15 3.1415927 — X, stack not pushed.
41 Terminates digit entry and pushes the stack.
The argument entered will be in X and Y.
Z-T
Y2
X—+Y

NOP 77 No Operation Do nothing instruction that will terminate digit
entry,

HALT 17 Halt External hardware detects HALT op code and
generates HOLD = 1. Processor waits for HOLD
= 0 before continuing. HALT acts as a NOP and
may be inserted hetween digit entry instructions
since it does not terminate digit entry,

Move ROLL 43 m Roll Stack. X
/
T \Y
N,/
POP 56 Pope Pop Stack.
Y=+ X
Z—-Y
T2
0-T
XEY 60 Exchange X and Y.
Xe—Y
XEM 33 Exchange X with memory.
X+—M
MS 34 Store X in Memory.
X—~M
MR 35 Recall Memory into X.
M- X

LSH 36 Left Shift Xm X mantissa is left shifted while leaving decimal
point in same position., Former most significant
digit is saved in fink digit. Least significant digit
is zerg.

RSH 37 Right Shift Xm X mantissa is right shifted while leaving decimal

point in same position. Link digit, which is
normally zero except after a left shift, is shifted
into the most significant digit, Least significant
digit is lost.

Table I

MMS7 109 Instruction Description Table (Continued] (* Indicates 2-word instruction)

CLASS | SUBCLASS | MNEMONIC® OCJOA;EOP FULL NAME DESCRIPTION

Math F{X,Y) + n Add Xto¥ X+ ¥ = X . 0On+, — x /and YX
instructions, stack 15 popped as follows:

Z-Y

T2

0-T .
Former X, Y are lost,

- 72 Subtract X fromY. Y - X -+ X

x 73 Multiply X times Y. ¥ x X — X

/ 74 Divide X into Y. Y+ X=X

YX 70 o Raise Y 10 X power. YX - x

FiX.M} INV +* 40, 1 Memory Plus Add X to memory. M+ X —~M
On INV + —, x and / instructions, X, Y, Z,
and T are unchanged.

INV =" 40, 72 Memory Minus Subtract X from memory. M- X — M

INV x* 40,73 Memory Times Multiply X times memory. M x X = M

INV /* 40, 74 Memory Divide Divide X into memory. M+ X+ M

F (X) Math 11X 67 e Crey it 1< X=X, Onall F{X)math instructions ¥, Z,
T and M are unchanged and previous X 1s lost.

SQRT 64 VX = X

sQ 63 X2 x

10X 62 10X ~ X

EX 61 eX = X

LN 65 In X —~ X

LOG 66 log X =+ X

FiX) Trig SIN 44 SIN(X) = X. On all F{X} tng functions, ¥, Z, T,
and M are unchanged and the previous X is iost,

Cos 45 COS{X) ~ X

TAN a6 o TAN[X) =X

iNV SIN® 40, 44 Tnverse sine X SINT1(X) ~ X

INV COS® 40, 45 inverse cosine X | COS™1(X) -~ X

INV TAN* 40, 46 : TANTY{X) ~ X

OTR 55 Convert X from degrees to radians.

RTD 54 Convert X from radians to degrees.

Clear MCLA 57 Clear all internal registers and memory ; irmitialize
1/0 control signals, MDC = 8, MODE = ficating
point. (See initiafization.)

ECLR 53 QO ~ Error flag

Branch Test JMP* 25 Unconditional branch to address specified by
second instruction word. On all branch instruc:
uons, second word contains branch address to
be loaded into external PC.

TJC* 20 Test jump Branch to address specified by second instruc:

condition tion word if JC {Ig) s true {=1}. Otherwise,
skip over second word.

TERR® 24 Test error Branch to address specified by second instruc
uon word if error flag 1s true {=1). Otherwise,
skip over second word. May be used for
detecting specific errors as opposed to using the
automatic error recovery scheme dealt with in
the section on Error Control.

TX=0" 21 Test X=10 Branch to address specified by second instruc-
tion word if X = 0. Otherwise, skip over second
word.

TXF* 23 Test 1X1< Branch to address specified by second instruc-
tion word if |X{ < 1, Otherwise, skip over
second word. [i.e. branch if X is a fraction.}

TXLTO® 22 Test X< 0 Branch to address specified by second instruc-

tion word if X < 0. Otherwise, skip over second
word.

Table II

MMS57109 Instruction Summary Table {* = 2-word instruction)

lglg
lg—11 6

m Mmoo O W o D0 O B W - &

SET oy Lseadnns ACOZ-AD% |, #0C
Pf‘\()(\0 ‘f")}‘NN.VVE &fo%r')w".
Table III - CALC-1 Instruction to ASCII Character Lookup Table

FULL NAME HEX OP CODE MNEMONIC ASCII CHARACTER
00 po]
01 pl 1
02 p2 2
03 p3 3
04 i1 A
05 p5 5
06 fé6 6
07 07 7
08 h8 8
09 09 9
0A DP .
0B EE E
oc cs Z
; oD PI P
Asynchronous Input OE AIN
Halt OF HALT
Test Jump 19 TJC
Test X=0 11 TX=0
Test X«<@ 12 TXLTO
Test 1 X 1«1 13 TX¥F
Test Error 14 TERR
Jump 15 JMP
Multidigit OQut 16 ouT
Multidigit In 17 IN
Bt ek 18 SMDC M
' f 19 IBNZ
Dec & Branch if M=@ 1A DBNZ
Boaans : 1B XEM A
1C MS G
1D MR H
1E LSH
1F RSH
20 . INV I
21 EN Spateor Catt a9 L um
22 TOGM >
23 ROLL 0
24 SIN s
25 cos C
26 TAN T
27 SF1
Pulse Flag 1 28 PF1
Set Flag 2 29 SF2
Pulse Flag 2 <A PF2
,_ ;Fgé”g‘"q@ 2B ECLR Y
Radians to GNETRAY 2C RTD F
Dearaes ;o Radigs 2D DTR D
QBMM 2E POP

ZF MCLR Cntrl X

Table III - CALC~1 Instruction to ASCII Character Lookup Table

NAME HEX OP CODE MNEMONIC ASCII CHARACTER

3p XEY X
31 EX W
32 10X U
33 sQ Q
34 SQRT v
35 LN N
36 LOG B
37 1/% R
38 YX ~
39 + +
3A - -
3B X *
3c / /
3D PEW1

Pulse R/W 2 3E PRW2

No Operation 3F NOP

Table IV - Fleating Point Mode QUT data storage

Memory Location DP POS D7 D6 D5 D4 D3 D2 DI DO
20 ﬂ p i)] i] f
21 9 o 1 g ? i f o
22) p 1 1 Sm P p é
23 p P 1 1 Dp POS
24 @B ()] i} 1 1 BCD digit(left most)
5 PA (i P 1 1 BCD digit
26 f9 P 9 1 1 BCD digit
27 p8 [/ [1 1 BCD digit
28 B7 [/ [1 1 BCD digit
29 pé6 [/ [1 1 BCD digit
24 B35 [/] 1 1 BCD digit
2B P4 (1] 1 1 BCD digit(right most)

Table IV - Scientific Mode OQUT data storage

Memory Location D7 D6 D5 D& D3 D2 DI DO

|
I
|
|
l

20 s @ 1 1 Most signif. exp. digit

21 p ¢ 1 1 Least signif. exp. digit

22 p @ 1 1 Sm B] Se

23 NOT USED

24 o6 0 1 1 BCD digit (left most)

25 g 1 1 BCD digit

26 o @ 1 1 BCD digit

27 g @ | 1 BCD digit

28 p 0 1 1 BCD digit

29 o 9 1 1 BCD digit

24 g 1 | BCD digit

2B L 1 1 BCD digit (left most)
Notes:

1) If the Mantissa Digit Count (set by SMDC instruction, initially 8)
is less than 8, the unused digit memory locgtions will be filled
with ASCII spaces (2ﬂ16)

2) Sm is the sign of the mantiesa. # = positive 1= negative
3) Se is the sign of the exponent B = positive l= negative

4) DP POS is the decimal point position. The decimal point should
follow the digit whose address is stored in memory location 24 when in the
Sclentific mode. 1In the Floating Point mode AND the data in memory location
23 with @F and subtract the result from 2F and OR this with 2§, The
decimal point should follow the digit whose address is given by the
result.

Table V - ASCII to CALCULATOR INSTRUCTION LOOKUP TABLE

LSB MSB 0 1 2 3 4 5 6 7
QF OF 21 00 OF OD OF OD
OF OF oOr 01 1B 33 OF 33
QF OF OF 02 36 37 36 37
OF OF OF 03 25 24 25 24
OF OF QOF 04 2D 26 2D 26
OF OF OF 05 0B 32 0B 32
OF QF OF 06 2C 34 2Cc 34
OF O OF 07 1Cc 31 1c 31
OF 2F OF 08 1D 30 1p 30
OF OF OF 09 20 2B 20 2B
OF OF 3B OF OF 0OC OF oOC
OF OF 39 OF OF OF OF OF
OF OF OF OF OF OF (OF OF
2Y OF 3A OF 18 OF 18 OF
OF OF OA 22 35 38 135 oF
OF OF 3¢ OF 23 OF 23 OF

METOE OO AN S WR e~

Example: An ASCII P 1is & hex 50 which points in the table to a 0D which is
the constant PI instruction for the calculator chip

TABLE VI- ERROR CONDITIONS
The ERROR flag on the calculator chip is set when:
1) LN X when ¥ € 0 LOG X when X € O
2) Any result{ 10799 Any result > 10 99
3) TAN 90° , 2709, 4509 , etc.
4) SIN X, Cos X, TAN X when [X|> 9000°

bx when| X\ >lor IXI¢ 10739

5) siN"l %, cos”
6) SQRT X when X< 0

7) dividing by 0O

8) Outputting a number in floating point mode if the number of mantigsa

digits to the left of the decimal point is greater than the mantissa
digit count.

Figure 1

VSS""" By
[HOLD
Vpp=—=P 4V p—p RDY
b GR
g 1) »| cONTROL
0SC — 2 SIGNALS fouefy I5EL
CLG‘:E‘K ")3 L INTERNAL CLOCKS > A
SYNC =y T
p—lp 4)
MICROPROGRAM
POR=—=] INITIALIZATION [P STORAGE ROM O—»! rflLacs P2
l o £RROR
3 3
—p — X
Y
 STACK | g 0iGiT maNTISSA
" 3 REGISTER FILE
CONTROL ﬂ {
1 I — LOGIC J
Iy/ADR > M MEMORY]
14,04 ?_ —p-
13/03 > —p DAT(LEAST)
13:02 ’J DIGIT ey DA2
$! ADDRESS
1¢/D1 > COUNTER = DAJ
J, DA (MOST}
P IEE———
. DO (LEAST)
ARITHMETIC 4 87 DIGIT DATA
UNIT DIGIT bl D12
DATA
ouT — 003

—_- 004 {MDST)

ASCII to Hexadecimal Conversion Table

